

Topic 18 Logic – Summary**Vocabulary**

command (n): an instruction given to a computer program or operating system to perform a specific task.

boolean (adj): anything that relates to, uses, or operates on the two-state (**true** / **false**) logic.

condition (n): an expression that evaluates to either **true** or **false**. A condition is used to control the flow of execution in a program by deciding whether a certain block of code should run or not. A condition is used in statements containing **if**, **while**, and **for**, etc.

truth table (n): a table showing all the possible combinations of inputs and outputs of an operator or expression.

logic circuit (n): an electronic circuit that performs boolean logic operations on binary inputs to produce binary outputs. It is the physical implementation of boolean algebra.

bug (n): an error or flaw in a computer program.

operator precedence (n): the order in which you apply the operators in a mathematical equation

Concepts**Truth Tables**

Be sure you have the truth table for **NOT**, **AND** and **OR** memorized. Although it likely won't be asked on the Pearson exam, the other common logic operator is the **XOR** (exclusive or) operator.

A	B	NOT B	A AND B	A OR B	A XOR B
0	0	1	0	0	0
0	1	0	0	1	1
1	0		0	1	1
1	1		1	1	0

Order of Precedence

If you look at the truth tables for **AND** and **OR**, you'll see that **AND** is similar to multiplication ($0 \times 1 = 0$, and $0 \text{ AND } 1 = 0$, etc.) while **OR** is similar to addition (with the exception that $1 \text{ OR } 1 = 1$ while $1 + 1 = 2$). Remember this will help you memorize the **order of operations** as well as the **distributive law**:

Order of Operations	
1	brackets
2	NOT
3	AND (\times)
4	OR (+)

Distributive law

Arithmetic (as you know from math class):

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Boolean logic:

$$a \text{ AND } (b \text{ OR } c) = (a \text{ AND } b) \text{ OR } (a \text{ AND } c)$$